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Abstract - In this paper artificial neural networks (ANNs) 
are applied to diagnosis of soft and catastrophic defects in a 
nonlinear analog circuit. In fact, today the technical 
diagnosis is great challenge for design engineers because the 
diagnostic problem is generally underdeterminate. The 
diagnosis methods are based mostly on proprietary 
knowledge and personal experience, although they are built 
into integrated diagnostic equipment. ANN approach is 
proposed here as an alternative to existing solutions, based 
on the fact that ANNs are expected to encompass all phases 
of the diagnostic process. The approach is demonstrated on 
the example of an integrated operational amplifier, and the 
generalization property is shown by supplying noisy data to 
ANN's inputs during diagnosis. 

1.  INTRODUCTION 

Every complex system is liable to faults or failures. In 
most general terms a fault is any change in a system that 
prevents it from operating in the proper manner. We define 
diagnosis as the task of identifying the cause of a fault that is 
manifested by some observed behavior. Then some method 
of determining what fault has occurred is required. This is 
most often considered to be a two-stage process: firstly the 
fact that fault has occurred must be recognized – what is 
referred to as fault detection. Secondly, the nature should be 
determined such that appropriate remedial action may be 
initiated.  
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Fig. 1.  A general diagnosis system 

 

The general structure of application of a diagnostic 
system is shown in Fig. 1. Inputs to the diagnostic system are 
the signals u(t) and y(t). Except the control signals the system 
under test, here denoted as “process”, is affected by faults 
and disturbances (here measurement errors) not known to the 
diagnostic system. The task of the diagnosis system is to 
generate a diagnosis statement S, which contains information 
about fault modes that can explain the behavior of the 

process. Note that the diagnosis system is assumed passive 
i.e. it can by no means affect the Process. 

In this paper we will show that ANN may be trained for 
modeling the look-up table. Then, the ANN running with the 
given vector of stimuli may be viewed as search of the look-
up table. The ANN response, if the network properly trained, 
will immediately find the fault. In addition, uncertain (to 
some extent) input data will lead to correct fault isolation 
thanks to the generalization property of the ANN. 

 

2.  CONCEPTS OF DIAGNOSIS 

Besides the human expert that is usually performing the 
diagnostic project, one needs tools that will help, and what is 
most desired, will perform diagnosis automatically. Such 
tools are a great challenge to design engineers that pertains to 
the fact that generally the diagnostic problem is under 
determinate. In addition, it is a deductive process with one set 
of data creating, in general, unlimited number of hypotheses 
among which one should try to find the solution. This is why 
permanent attention of the research community is attracted by 
this problem [1]. 

Thanks to the advent of computation intelligence in the 
last decades new concepts were applied based on: Production 
rule based artificial intelligence, such as [2], Artificial neural 
networks, such as [3], and Fuzzy-neural networks, such as 
[4], trying to create a system that contains properties that we 
consider as “intelligent behaviour”. Here the ANN approach 
was selected. The reason will be discussed later on. 

In order to get the idea on why and how the ANNs are 
applied to analog electronic circuit diagnosis, the very 
diagnostic concept will be described first. It is about 
collaboration of design, test, and field engineers and about 
mutual distribution of responsibilities aiming long life cycle 
of the electronic product containing the analog subsystem 
considered here. We consider that field engineers are 
expected to react after functional failure of the system. In 
order to diagnose such system they are to be supplied with: 
testing equipment, list of specific measurements to be done 
(including set of signals and test points), and diagnostic 
software to process the measurement data. Similar set of data 
and tools are expected to be given to the test engineer in a 
production foundry in order to create a picture of the 
production yield and create feedback to process engineers. 
We believe design engineers are the most familiar with the 
product and capable to synthesize test and diagnostic signals 
and procedures should prescribe all these. This means the so-
called concept of simulation before test is to be applied to 
create fault dictionaries containing exhaustive list of faults 
and corresponding responses. The fault dictionary is in fact a 
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table representing the mapping from the fault list into a list of 
faulty (or possibly, fault-free) responses. In that way the 
diagnostic process becomes a search through the fault 
dictionary. We claim here that ANNs, being universal 
approximators [5], are the best way to perform this search 
and consequently to perform diagnosis. 

Analog electronic circuits are known to be difficult to test 
and diagnose. Apart from the huge number of possible faults, 
this is a consequence of the inherent nonlinearity of these 
circuits. Even linear circuits (having linear input-output 
signal interdependence) exhibit nonlinear relation between 
circuit parameters and output response. There are no linear 
active networks. They may be linearized and sought as such 
for situations where signal and parameter changes are small 
in comparison to nominal values. For defects, however, 
where large changes of the parameters or catastrophic faults 
are present in the circuit (affecting the DC regime), circuit 
theoretical approaches face sever limitations. Accordingly, 
the circuit theoretical concepts that are proposed encompass 
limited subclasses of circuits (linear passive or linear active), 
limited types of faults (mostly parametric), and signals (DC 
or sinusoidal) [1], [6], [7], [8]. When nonlinear circuits were 
to be diagnosed small amplitudes of the parameter increments 
were allowed in [9]. Large parametric fault diagnosis was 
described in [10] where piecewise linear models were 
implemented for the DC analysis, and separate considerations 
were given for diagnosis of faults in the dynamic part of the 
network based on large change sensitivity computations.  

A specific aspect related to diagnosis is the number and 
location of the test points. To simplify, we can say that mea-
surements on the primary inputs and outputs are preferred. 
This is not only related to their automatic accessibility but 
also to the nature of the diagnostic reasoning. Namely, one 
looks for function when is to diagnose something, and the 
function is seen at the output. Of course, to compensate for 
the small number of test points one should perform more 
measurements applying different types of signals so 
extracting complete information about the system behavior. 
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Fig. 2.  A fully connected feed-forward neural network  
 

ANNs were already applied to diagnosis [11], [12], [13], 
[14], [15]. These were however applications concerning 
linear analog circuits. Here we describe preliminary results of 
application of a feed-forward ANNs for diagnosis of 

nonlinear dynamic electronic circuit with no restriction to the 
number and type of faults. It is based on fault dictionary 
creation and application of ANN as both the system for data 
compression that memorizes the table representing the fault 
dictionary, and as the mapping machine that looks-up the 
table to find the most probable fault-code. 

The feed-forward neural network is structured in layers. 
The most frequently used structure of a feed-forward ANN is 
shown in Fig. 2. It has k input signals, one hidden layer of n 
neurons with sigmoidal transfer function, and one output 
layer of m linear-transfer-function neurons. Arrows mark the 
signal transfer between neurons. The value denoted for some 
arrows is to express the fact that the output signal of a neuron 
from the previous layer is multiplied by a constant, here 
referred to as weight, wi,j, before exciting the neuron of the 
next layer. The network is fully connected if all wi,j are 
nonzero. Prime and second are used to distinguish weights 
affecting different layers. 

3.  APPLICATION EXAMPLE 

A CMOS operational amplifier consisting of seven 
transistors, shown in Fig. 3, is used as an application 
example. Only transistor faults were considered - ten faults 
per transistor, six catastrophic and four parametric. As shown 
in the figure (around TR7) there are three open-circuited 
faults (denoted as OC), and three short-circuited faults (SC) 
per transistor. In addition, two faulty values for every channel 
length (±20%), and for every channel width (±20%), were 
introduced. By inspection of the circuit one obtains a set of 
70 faults.  
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Fig. 3.  The operational amplifier circuit. SC=short circuit, 

OC=open circuit 

 

Only one test point is allowed, the primary output where 
we measure Vo. The DC output value (VoDC j) was obtained by 
simulation first. Here j=0,1,2,…,69 stands for the fault code, 
where j=0 denotes the fault-free circuit. Faults are coded 
randomly, in order to avoid that similar fault effects have 
close values of the codes. In addition, the frequency response 
of the circuit (non-inverting input terminal was excitated by 
the signal of amplitude 1mA) was obtained by simulation 
over a fixed frequency range in order to extract two response 
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parameters: the nominal gain (Aj) and the 3-dB cut-off 
frequency (f3 dBj). Note that because of the nonlinearity of the 
circuit, every fault is expected to change the linearized-circuit 
version that is used for frequency domain performance 
extraction. We need to create fault models to be implemented 
into the original circuit in order to generate the linearized 
version. It is done according to [16] and [17] and will be not 
discussed here. Finally, the fault dictionary created here has 
three columns containing the set of circuit performances: 
{VoDCj, Aj, f3 dBj}. Part of the fault dictionary is depicted in 
Table 1. Fault SC3gd is undistinguishable because of the 
existing connection between the gate and drain of T3. This 
reduced the fault dictionary to 69 elements.  

Table 1. Part of the Fault Dictionary for the Circuit of Fig. 3 

Type Code 
(j) Aj f3 dB j [MHz] VoDC j 

[V] 
FF 0  419 0.01527 0.127 

1W+ 44 0.055 1.848 3.3 
1W- 14 0.012 3.043 0.052 
1 L+ 37 0.0053 6.791 0.0497 
1L- 30 0.0416 4.058 3.3 

OC1G 49 0.047 501.187 0.127 
OC2G 18 0.32 19000 0.127 
OC3G 47 0.049 544.042 0.093 
OC4G 19 0.318 21000 0.064 

SC1DG 6 0.042 320.440 0.0458 
SC2DG 21 0.83 12300 3.3 
SC5DG 11 0.211 24000 0.022 

 

The fault dictionary is further reduced by processing the 
ambiguity groups that exist in this structure. According to 
[18] “an ambiguity group is, essentially, a group of 
components where, in case of fault, it is not possible to 
uniquely identify the faulty one”. Here we would say that an 
ambiguity group consists of a set of faults that propagate 
identical fault effect to the output, so being testable, while no 
distinction among them is possible making them not 
diagnosable. Table 2 represents all ambiguity groups 
discovered after simulation. Only one representative of a 
group was included into the fault dictionary. The faults 
italized in the Table 2 represent physically the same 
connection in the circuit, so the effect must be the same. 
After some simple calculation one may find that the complete 
fault dictionary in this case will have 70-1-24+10=55 
elements.  

Having three data for every fault, the neural network 
input structure is restricted to k=3. We expect the ANN to 
diagnose the fault in a way it outputs the fault-code (j), so we 
need only one output neuron. The number of hidden neurons 
is found by trial and error after several iterations starting with 
an estimation based on [19]. The goal was to find the 
minimum n that still leads to satisfactory classification even 
under noisy excitation. Of course, no mistakes were observed 
for all 55 faults. The software for neural network training was 
used [20]. 

The generalization property of the network is verified by 
supplying noisy data to its inputs. This is presented in Table 
3, 30 samples are examined. For each sample, one input 
(bolded in the table) is changed for ±5%, representing noise 
generated during the measurement process. The responses of 

the network are given in the last column of the table. We can 
notice that faults can be distinguished in that situation also. 

Table 2. Ambiguity Groups 
Ambiguity 

group 
Faults 

included A 
F3 

[MHz] 
Vo [V] 

OC1D 1 OC1S 0.31 20000 0.0179 

OC3D 2 OC3S 0.041 365.8 3.3 

OC4D 
OC4S 
SC4GS 
SC3GS 

3 

SC3DS 

0.303 20000 0.0458 

OC5D 4 OC5S 0.056 507.298 3.3 

OC6D 5 OC6S 0.063 0.039 3.3 

OC7D 6 OC7S ∞→A  Undeter-
minable 0 

SC1GS 7 SC2GS 0.055 515.993 3.3 

SC5GS 8 SC7GS 0.109 0.036 0 

SC4DS 
SC6GS 9 
SC7DS 

A=0 Undeter-
minable 3.3 

3L+ 10 4W+ 0.05 2.37 3.3 

 
 

Table 3. Inputs with Noise and ANN Responses 

Code Aj 
f3 dB j 
[MHz] 

VoDC j 
[V] 

ANN 
response 

0 419 0.0145 0.127 -0.02128 
1 129.6 0.0248 0.079 1.09057 
2 0.109 0.036 -0.05 2.01405 
3 6028 0.001575 0.1712 2.93868 
5 4453 0.002415 1.0255 5.03203 
6 0.0441 320.44 0.0458 6.03224 
9 1000 1000 -0.05 9.0707 

10 0.043 365.8 3.3 10.0278 
12 1000 1000 3.39 12.1771 
13 5770 0.00171 0.2146 13.2376 
16 8220 0.00197 0.4876 16.031 
18 0.32 1000 0.133 17.8458 
20 0 1000 3.46 20.4409 
21 0.83 1000 3.46 20.6497 
25 0.0588 507.298 3.3 25.0605 
26 11.739 0.114 0.127 26.0098 
27 0.071 312.071 3.46 27.0091 
34 5809 0.00169 0.1811 33.7541 
35 209 0.0237 0.115 35.47 
36 0.05 1000 0.8824 36.3514 
37 0.00556 6.791 0.0497 37.2652 
43 0.004 17.191 0.0509 43.0008 
46 0.0523 515.993 3.3 45.99 
47 0.0514 544.042 0.093 47.0133 
49 0.04935 501.19 0.127 49.042 
50 6030 0.001425 0.2466 49.9284 
52 0.005 133.757 3.46 52.0044 
53 119.4 0.0258 0.0843 53.0205 
54 0.041 428 3.3 53.5346 
55 0.688 0.57 0.0186 54.8614 
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4.  CONCLUSION 

ANN approach is applied here to diagnosis of a 
nonlinear dynamic electronic circuits. Both the catastrophic 
and soft defects were diagnosed in this example. The 
generalization property of the ANN was verified by 
supplying noisy data to its input terminals. Accordingly, we 
may conclude that ANNs are convenient and powerful means 
for diagnosis, and, what is important, realisable as a hardware 
that may be as fast as necessary to follow the changes of the 
system's response in real time. Also, more complex systems 
may be considered and larger fault dictionaries may be 
sought. 
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Sadržaj – U radu je prikazana primena veštačkih neuronskih 
mreža na dijagnozu mekih i katastrofalnih defekata u 
nelinearnom analognom  kolu. Zapravo, danas je tehnička 
dijagnostika veliki izazov za projektante, pa je dijagnostički 
problem teško definisati. Zato su metodi dijagnostike bazirani 
na sopstvenom znanju i ličnom iskustvu. Ovde je prikazan 
pristup, zasnovan na veštačkim neuronskim mrežama, koji 
predstavlja alternativu postojećim rešenjima jer se očekuje da 
neuronska mreža obuhvati sve faze procesa dijagnoze. 
Pristup je pokazan na primeru integrisanog operacionog 
pojačavača, a svojstvo generalizacije prikazano je 
dovođenjem signala sa šumom na ulaze neuronske mreže radi 
dijagnoze.   

PRIMENA VEŠTAČKIH NEURONSKIH MREŽA U 
DIJAGNOSTICI ELEKTRONSKIH KOLA  
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